le_mem.h

Go to the documentation of this file.
1 /**
2  * @page c_memory Dynamic Memory Allocation API
3  *
4  *
5  * @subpage le_mem.h "API Reference"
6  *
7  * <HR>
8  *
9  * Dynamic memory allocation (especially deallocation) using the C runtime heap, through
10  * malloc, free, strdup, calloc, realloc, etc. can result in performance degradation and out-of-memory
11  * conditions.
12  *
13  * This is due to fragmentation of the heap. The degraded performance and exhausted memory result from indirect interactions
14  * within the heap between unrelated application code. These issues are non-deterministic,
15  * and can be very difficult to rectify.
16  *
17  * Memory Pools offer a powerful solution. They trade-off a deterministic amount of
18  * memory for
19  * - deterministic behaviour,
20  * - O(1) allocation and release performance, and
21  * - built-in memory allocation tracking.
22  *
23  * And it brings the power of @b destructors to C!
24  *
25  * @todo
26  * Do we need to add a "resettable heap" option to the memory management tool kit?
27  *
28  *
29  * @section mem_overview Overview
30  *
31  * The most basic usage involves:
32  * - Creating a pool (usually done once at process start-up)
33  * - Allocating objects (memory blocks) from a pool
34  * - Releasing objects back to their pool.
35  *
36  * Pools generally can't be deleted. You create them when your process
37  * starts-up, and use them until your process terminates. It's up to the OS to clean-up the memory
38  * pools, along with everything else your process is using, when your process terminates. (Although,
39  * if you find yourself really needing to delete pools, @ref mem_sub_pools could offer you a solution.)
40  *
41  * Pools also support the following advanced features:
42  * - reference counting
43  * - destructors
44  * - statistics
45  * - multi-threading
46  * - sub-pools (pools that can be deleted).
47  *
48  * The following sections describe these, beginning with the most basic usage and working up to more
49  * advanced topics.
50  *
51  *
52  * @section mem_creating Creating a Pool
53  *
54  * Before allocating memory from a pool, the pool must be created using le_mem_CreatePool(), passing
55  * it the name of the pool and the size of the objects to be allocated from that pool. This returns
56  * a reference to the new pool, which has zero free objects in it.
57  *
58  * To populate your new pool with free objects, you call @c le_mem_ExpandPool().
59  * This is separated into two functions (rather than having
60  * one function with three parameters) to make it virtually impossible to accidentally get the parameters
61  * in the wrong order (which would result in nasty bugs that couldn't be caught by the compiler).
62  * The ability to expand pools comes in handy (see @ref mem_pool_sizes).
63  *
64  * This code sample defines a class "Point" and a pool "PointPool" used to
65  * allocate memory for objects of that class:
66  * @code
67  * #define MAX_POINTS 12 // Maximum number of points that can be handled.
68  *
69  * typedef struct
70  * {
71  * int x; // pixel position along x-axis
72  * int y; // pixel position along y-axis
73  * }
74  * Point_t;
75  *
76  * le_mem_PoolRef_t PointPool;
77  *
78  * int xx_pt_ProcessStart(void)
79  * {
80  * PointPool = le_mem_CreatePool("xx.pt.Points", sizeof(Point_t));
81  * le_mem_ExpandPool(PointPool, MAX_POINTS);
82  *
83  * return SUCCESS;
84  * }
85  * @endcode
86  *
87  * To make things easier for power-users, @c le_mem_ExpandPool() returns the same pool
88  * reference that it was given. This allows the xx_pt_ProcessStart() function to be re-implemented
89  * as follows:
90  * @code
91  * int xx_pt_ProcessStart(void)
92  * {
93  * PointPool = le_mem_ExpandPool(le_mem_CreatePool(sizeof(Point_t)), MAX_POINTS);
94  *
95  * return SUCCESS;
96  * }
97  * @endcode
98  *
99  * Although this requires a dozen or so fewer keystrokes of typing and occupies one less line
100  * of code, it's arguably less readable than the previous example.
101  *
102  * For a discussion on how to pick the number of objects to have in your pools, see @ref mem_pool_sizes.
103  *
104  * @section mem_allocating Allocating From a Pool
105  *
106  * Allocating from a pool has multiple options:
107  * - @c le_mem_TryAlloc() - Quietly return NULL if there are no free blocks in the pool.
108  * - @c le_mem_AssertAlloc() - Log an error and take down the process if there are no free blocks in
109  * the pool.
110  * - @c le_mem_ForceAlloc() - If there are no free blocks in the pool, log a warning and automatically
111  * expand the pool (or log an error and terminate the calling process there's
112  * not enough free memory to expand the pool).
113  *
114  * All of these functions take a pool reference and return a pointer to the object
115  * allocated from the pool.
116  *
117  * The first option, using @c le_mem_TryAlloc(), is the
118  * closest to the way good old malloc() works. It requires the caller check the
119  * return code to see if it's NULL. This can be annoying enough that a lot of
120  * people get lazy and don't check the return code (Bad programmer! Bad!). It turns out that
121  * this option isn't really what people usually want (but occasionally they do)
122  *
123  * The second option, using @c le_mem_AssertAlloc(), is only used when the allocation should
124  * never fail, by design; a failure to allocate a block is a fatal error.
125  * This isn't often used, but can save a lot of boilerplate error checking code.
126  *
127  * The third option, @c using le_mem_ForceAlloc(), is the one that gets used most often.
128  * It allows developers to avoid writing error checking code, because the allocation will
129  * essentially never fail because it's handled inside the memory allocator. It also
130  * allows developers to defer fine tuning their pool sizes until after they get things working.
131  * Later, they check the logs for pool size usage, and then modify their pool sizes accordingly.
132  * If a particular pool is continually growing, it's a good indication there's a
133  * memory leak. This permits seeing exactly what objects are being leaked. If certain debug
134  * options are turned on, they can even find out which line in which file allocated the blocks
135  * being leaked.
136  *
137  *
138  * @section mem_releasing Releasing Back Into a Pool
139  *
140  * Releasing memory back to a pool never fails, so there's no need to check a return code.
141  * Also, each object knows which pool it came from, so the code that releases the object doesn't have to care.
142  * All it has to do is call @c le_mem_Release() and pass a pointer to the object to be released.
143  *
144  * The critical thing to remember is that once an object has been released, it
145  * <b> must never be accessed again </b>. Here is a <b> very bad code example</b>:
146  * @code
147  * Point_t* pointPtr = le_mem_ForceAlloc(PointPool);
148  * pointPtr->x = 5;
149  * pointPtr->y = 10;
150  * le_mem_Release(pointPtr);
151  * printf("Point is at position (%d, %d).\n", pointPtr->x, pointPtr->y);
152  * @endcode
153  *
154  *
155  * @section mem_ref_counting Reference Counting
156  *
157  * Reference counting is a powerful feature of our memory pools. Here's how it works:
158  * - Every object allocated from a pool starts with a reference count of 1.
159  * - Whenever someone calls le_mem_AddRef() on an object, its reference count is incremented by 1.
160  * - When it's released, its reference count is decremented by 1.
161  * - When its reference count reaches zero, it's destroyed (i.e., its memory is released back into the pool.)
162  *
163  * This allows one function to:
164  * - create an object.
165  * - work with it.
166  * - increment its reference count and pass a pointer to the object to another function (or thread, data structure, etc.).
167  * - work with it some more.
168  * - release the object without having to worry about when the other function is finished with it.
169  *
170  * The other function also releases the object when it's done with it. So, the object will
171  * exist until both functions are done.
172  *
173  * If there are multiple threads involved, be careful to protect the shared
174  * object from race conditions(see the @ref mem_threading).
175  *
176  * Another great advantage of reference counting is it enables @ref mem_destructors.
177  *
178  * @note le_mem_GetRefCount() can be used to check the current reference count on an object.
179  *
180  * @section mem_destructors Destructors
181  *
182  * Destructors are a powerful feature of C++. Anyone who has any non-trivial experience with C++ has
183  * used them. Because C was created before object-oriented programming was around, there's
184  * no native language support for destructors in C. Object-oriented design is still possible
185  * and highly desireable even when the programming is done in C.
186  *
187  * In Legato, it's possible to call @c le_mem_SetDestructor() to attach a function to a memory pool
188  * to be used as a destructor for objects allocated from that pool. If a pool has a destructor,
189  * whenever the reference count reaches zero for an object allocated from that pool,
190  * the pool's destructor function will pass a pointer to that object. After
191  * the destructor returns, the object will be fully destroyed, and its memory will be released back
192  * into the pool for later reuse by another object.
193  *
194  * Here's a destructor code sample:
195  * @code
196  * static void PointDestructor(void* objPtr)
197  * {
198  * Point_t* pointPtr = objPtr;
199  *
200  * printf("Destroying point (%d, %d)\n", pointPtr->x, pointPtr->y);
201  *
202  * @todo Add more to sample.
203  * }
204  *
205  * int xx_pt_ProcessStart(void)
206  * {
207  * PointPool = le_mem_CreatePool(sizeof(Point_t));
208  * le_mem_ExpandPool(PointPool, MAX_POINTS);
209  * le_mem_SetDestructor(PointPool, PointDestructor);
210  * return SUCCESS;
211  * }
212  *
213  * static void DeletePointList(Point_t** pointList, size_t numPoints)
214  * {
215  * size_t i;
216  * for (i = 0; i < numPoints; i++)
217  * {
218  * le_mem_Release(pointList[i]);
219  * }
220  * }
221  * @endcode
222  *
223  * In this sample, when DeletePointList() is called (with a pointer to an array of pointers
224  * to Point_t objects with reference counts of 1), each of the objects in the pointList is
225  * released. This causes their reference counts to hit 0, which triggers executing
226  * PointDestructor() for each object in the pointList, and the "Destroying point..." message will
227  * be printed for each.
228  *
229  *
230  * @section mem_stats Statistics
231  *
232  * Some statistics are gathered for each memory pool:
233  * - Number of allocations.
234  * - Number of currently free objects.
235  * - Number of overflows (times that le_mem_ForceAlloc() had to expand the pool).
236  *
237  * Statistics (and other pool properties) can be checked using functions:
238  * - @c le_mem_GetStats()
239  * - @c le_mem_GetObjectCount()
240  * - @c le_mem_GetObjectSize()
241  *
242  * Statistics are fetched together atomically using a single function call.
243  * This prevents inconsistencies between them if in a multi-threaded program.
244  *
245  * If you don't have a reference to a specified pool, but you have the name of the pool, you can
246  * get a reference to the pool using @c le_mem_FindPool().
247  *
248  * In addition to programmatically fetching these, they're also available through the
249  * "poolstat" console command (unless your process's main thread is blocked).
250  *
251  * To reset the pool statistics, use @c le_mem_ResetStats().
252  *
253  * @section mem_diagnostics Diagnostics
254  *
255  * The memory system also supports two different forms of diagnostics. Both are enabled by setting
256  * the appropriate KConfig options when building the framework.
257  *
258  * The first of these options is @ref MEM_TRACE. When you enable @ref MEM_TRACE every pool is given
259  * a tracepoint with the name of the pool on creation.
260  *
261  * For instance, the configTree node pool is called, "configTree.nodePool". So to enable a trace of
262  * all config tree node creation and deletion one would use the log tool as follows:
263  *
264  * @code
265  * $ log trace configTree.nodePool
266  * @endcode
267  *
268  * The second diagnostic build flag is @ref MEM_POOLS. When @ref MEM_POOLS is disabled, the pools
269  * are disabled and instead malloc and free are directly used. Thus enabling the use of tools
270  * like Valgrind.
271  *
272  * @section mem_threading Multi-Threading
273  *
274  * All functions in this API are <b> thread-safe, but not async-safe </b>. The objects
275  * allocated from pools are not inherently protected from races between threads.
276  *
277  * Allocating and releasing objects, checking stats, incrementing reference
278  * counts, etc. can all be done from multiple threads (excluding signal handlers) without having
279  * to worry about corrupting the memory pools' hidden internal data structures.
280  *
281  * There's no magical way to prevent different threads from interferring with each other
282  * if they both access the @a contents of the same object at the same time.
283  *
284  * The best way to prevent multi-threaded race conditions is simply don't share data between
285  * threads. If multiple threads must access the same data structure, then mutexes, semaphores,
286  * or similar methods should be used to @a synchronize threads and avoid
287  * data structure corruption or thread misbehaviour.
288  *
289  * Although memory pools are @a thread-safe, they are not @a async-safe. This means that memory pools
290  * @a can be corrupted if they are accessed by a signal handler while they are being accessed
291  * by a normal thread. To be safe, <b> don't call any memory pool functions from within a signal handler. </b>
292  *
293  * One problem using destructor functions in a
294  * multi-threaded environment is that the destructor function modifies a data structure shared
295  * between threads, so it's easy to forget to synchronize calls to @c le_mem_Release() with other code
296  * accessing the data structure. If a mutex is used to coordinate access to
297  * the data structure, then the mutex must be held by the thread that calls le_mem_Release() to
298  * ensure there's no other thread accessing the data structure when the destructor runs.
299  *
300  * @section mem_pool_sizes Managing Pool Sizes
301  *
302  * We know it's possible to have pools automatically expand
303  * when they are exhausted, but we don't really want that to happen normally.
304  * Ideally, the pools should be fully allocated to their maximum sizes at start-up so there aren't
305  * any surprises later when certain feature combinations cause the
306  * system to run out of memory in the field. If we allocate everything we think
307  * is needed up-front, then we are much more likely to uncover any memory shortages during
308  * testing, before it's in the field.
309  *
310  * Choosing the right size for your pools correctly at start-up is easy to do if there is a maximum
311  * number of fixed, external @a things that are being represented by the objects being allocated
312  * from the pool. If the pool holds "call objects" representing phone calls over a T1
313  * carrier that will never carry more than 24 calls at a time, then it's obvious that you need to
314  * size your call object pool at 24.
315  *
316  * Other times, it's not so easy to choose the pool size like
317  * code to be reused in different products or different configurations that have different
318  * needs. In those cases, you still have a few options:
319  *
320  * - At start-up, query the operating environment and base the pool sizes.
321  * - Read a configuration setting from a file or other configuration data source.
322  * - Use a build-time configuration setting.
323  *
324  * The build-time configuration setting is the easiest, and generally requires less
325  * interaction between components at start-up simplifying APIs
326  * and reducing boot times.
327  *
328  * If the pool size must be determined at start-up, use @c le_mem_ExpandPool().
329  * Perhaps there's a service-provider module designed to allocate objects on behalf
330  * of client. It can have multiple clients at the same time, but it doesn't know how many clients
331  * or what their resource needs will be until the clients register with it at start-up. We'd want
332  * those clients to be as decoupled from each other as possible (i.e., we want the clients know as little
333  * as possible about each other); we don't want the clients to get together and add up all
334  * their needs before telling the service-provider. We'd rather have the clients independently
335  * report their own needs to the service-provider. Also, we don't want each client to have to wait
336  * for all the other clients to report their needs before starting to use
337  * the services offered by the service-provider. That would add more complexity to the interactions
338  * between the clients and the service-provider.
339  *
340  * This is what should happen when the service-provider can't wait for all clients
341  * to report their needs before creating the pool:
342  * - When the service-provider starts up, it creates an empty pool.
343  * - Whenever a client registers itself with the service-provider, the client can tell the
344  * service-provider what its specific needs are, and the service-provider can expand its
345  * object pool accordingly.
346  * - Since registrations happen at start-up, pool expansion occurs
347  * at start-up, and testing will likely find any pool sizing before going into the field.
348  *
349  * Where clients dynamically start and stop during runtime in response
350  * to external events (e.g., when someone is using the device's Web UI), we still have
351  * a problem because we can't @a shrink pools or delete pools when clients go away. This is where
352  * @ref mem_sub_pools is useful.
353  *
354  * @section mem_sub_pools Sub-Pools
355  *
356  * Essentially, a Sub-Pool is a memory pool that gets its blocks from another pool (the super-pool).
357  * Sub Pools @a can be deleted, causing its blocks to be released back into the super-pool.
358  *
359  * This is useful when a service-provider module needs to handle clients that
360  * dynamically pop into existence and later disappear again. When a client attaches to the service
361  * and says it will probably need a maximum of X of the service-provider's resources, the
362  * service provider can set aside that many of those resources in a sub-pool for that client.
363  * If that client goes over its limit, the sub-pool will log a warning message.
364  *
365  * The problem of sizing the super-pool correctly at start-up still exists,
366  * so what's the point of having a sub-pool, when all of the resources could just be allocated from
367  * the super-pool?
368  *
369  * The benefit is really gained in troubleshooting. If client A, B, C, D and E are
370  * all behaving nicely, but client F is leaking resources, the sub-pool created
371  * on behalf of client F will start warning about the memory leak; time won't have to be
372  * wasted looking at clients A through E to rule them out.
373  *
374  * To create a sub-pool, call @c le_mem_CreateSubPool(). It takes a reference to the super-pool
375  * and the number of objects to move to the sub-pool, and it returns a reference to the new sub-pool.
376  *
377  * To delete a sub-pool, call @c le_mem_DeleteSubPool(). Do not try to use it to delete a pool that
378  * was created using le_mem_CreatePool(). It's only for sub-pools created using le_mem_CreateSubPool().
379  * Also, it's @b not okay to delete a sub-pool while there are still blocks allocated from it, or
380  * if it has any sub-pools. You'll see errors in your logs if you do that.
381  *
382  * Sub-Pools automatically inherit their parent's destructor function.
383  *
384  * @section mem_reduced_pools Reduced-size pools
385  *
386  * One problem that occurs with memory pools is where objects of different sizes need to be
387  * stored. A classic example is strings -- the longest string an application needs to be able
388  * to handle may be much longer than the typical string size. In this case a lot of memory
389  * will be wasted with standard memory pools, since all objects allocated from the pool will
390  * be the size of the longest possible object.
391  *
392  * The solution is to use reduced-size pools. These are a kind of sub-pool where the size
393  * of the object in the sub-pool is different from the size of the object in the super-pool.
394  * This way multiple blocks from the sub-pool can be stored in a single block of the super-pool.
395  *
396  * Reduced-size pools have some limitations:
397  *
398  * - Each block in the super-pool is divided up to create blocks in the subpool. So subpool
399  * blocks sizes must be less than half the size of the super-pool block size. An attempt to
400  * create a pool with a larger block size will just return a reference to the super-pool.
401  * - Due overhead, each block actually requires 8-80 bytes more space than requested.
402  * There is little point in subdividing pools < 4x overhead, or ~300 bytes in the default
403  * configuration. Note the exact amount of overhead depends on the size of the guard bands
404  * and the size of pointer on your target.
405  * - Blocks used by the reduced pool are permanently moved from the super-pool to the reduced
406  * pool. This must be taken into account when sizing the super-pool.
407  *
408  * Example 1:
409  *
410  * A network service needs to allocate space for packets received over a network. It should
411  * Typical packet length is up to 200 bytes, but occasional packets may be up to 1500 bytes. The
412  * service needs to be able to queue at least 32 packets, up to 5 of which can be 1500 bytes.
413  * Two pools are used: A pool of 12 objects 1500 bytes in size, and a reduced-size pool of 32
414  * objects 200 bytes in size (280 bytes with overhead). Seven objects from the superpool are
415  * used to store reduced-size objects. This represents a memory savings of 60% compared with
416  * a pool of 32 1500 byte objects.
417  *
418  * Example 2:
419  *
420  * An application builds file paths which can be from 16-70 bytes. Only three such paths can be
421  * created at a time, but they can be any size. In this case it is better to just create
422  * a single pool of three 70-byte objects. Most of the potential space gains would be consumed
423  * by overhead. Even if this was not the case, the super pool still needs three free objects
424  * in addition to the objects required by the subpool, so there is no space savings.
425  *
426  * To create a reduced-size pool, use @c le_mem_CreateReducedPool(). It takes a reference to the
427  * super-pool, the initial number of objects in the sub-pool, and size of an object in the sub-pool
428  * compared with the parent pool, and it returns a reference to the new sub-pool.
429  *
430  * Reduced-size pools are deleted using @c le_mem_DeleteSubPool() like other sub-pools.
431  *
432  * To help the programmer pick the right pool to allocate from, reduced-size pools provide
433  * @c le_mem_TryVarAlloc(), @c le_mem_AssertVarAlloc() and @c le_mem_ForceVarAlloc() functions.
434  * In addition to the pool these take the object size to allocate. If this size is larger than
435  * the pool's object size and the pool is a reduced-size pool, and there is a parent pool
436  * large enough for this object, it will allocate the object from the parent pool instead.
437  * If no parent pool is large enough, the program will exit.
438  *
439  * You can call @c le_mem_GetBlockSize() to get the actual size of the object returned by
440  * one of these functions.
441  *
442  * As with other sub-pools, they cannot be deleted while any blocks are allocated from the pool,
443  * or it has any sub-pools. Reduced-size pools also automatically inherit their parent's
444  * destructor function.
445  *
446  * <HR>
447  *
448  * Copyright (C) Sierra Wireless Inc.
449  */
450 
451 //--------------------------------------------------------------------------------------------------
452 /** @file le_mem.h
453  *
454  * Legato @ref c_memory include file.
455  *
456  * Copyright (C) Sierra Wireless Inc.
457  *
458  */
459 //--------------------------------------------------------------------------------------------------
460 
461 #ifndef LEGATO_MEM_INCLUDE_GUARD
462 #define LEGATO_MEM_INCLUDE_GUARD
463 
464 #ifndef LE_COMPONENT_NAME
465 # define LE_COMPONENT_NAME
466 #endif
467 
468 //--------------------------------------------------------------------------------------------------
469 /**
470  * Prototype for destructor functions.
471  *
472  * @param objPtr Pointer to the object where reference count has reached zero. After the destructor
473  * returns this object's memory will be released back into the pool (and this pointer
474  * will become invalid).
475  *
476  * @return Nothing.
477  *
478  * See @ref mem_destructors for more information.
479  */
480 //--------------------------------------------------------------------------------------------------
481 typedef void (*le_mem_Destructor_t)
482 (
483  void* objPtr ///< see parameter documentation in comment above.
484 );
485 
486 // Max memory pool name bytes -- must match definition in limit.h
487 #define LE_MEM_LIMIT_MAX_MEM_POOL_NAME_BYTES 32
488 
489 //--------------------------------------------------------------------------------------------------
490 /**
491  * Definition of a memory pool.
492  *
493  * @note This should not be used directly. To create a memory pool use either le_mem_CreatePool()
494  * or LE_MEM_DEFINE_STATIC_POOL()/le_mem_InitStaticPool().
495  */
496 //--------------------------------------------------------------------------------------------------
497 typedef struct le_mem_Pool
498 {
499  le_dls_Link_t poolLink; ///< This pool's link in the list of memory pools.
500  struct le_mem_Pool* superPoolPtr; ///< A pointer to our super pool if we are a sub-pool. NULL
501  /// if we are not a sub-pool.
502 #if LE_CONFIG_MEM_POOL_STATS
503  // These members go before LE_CONFIG_MEM_POOLS so numAllocations will always be aligned, even on
504  // 32-bit architectures, even when LE_CONFIG_MEM_POOLS is not declared
505  size_t numOverflows; ///< Number of times le_mem_ForceAlloc() had to expand pool.
506  uint64_t numAllocations; ///< Total number of times an object has been allocated
507  /// from this pool.
508  size_t maxNumBlocksUsed; ///< Maximum number of allocated blocks at any one time.
509 #endif
510 #if LE_CONFIG_MEM_POOLS
511  le_sls_List_t freeList; ///< List of free memory blocks.
512 #endif
513 
514  size_t userDataSize; ///< Size of the object requested by the client in bytes.
515  size_t blockSize; ///< Number of bytes in a block, including all overhead.
516  size_t totalBlocks; ///< Total number of blocks in this pool including free
517  /// and allocated blocks.
518  size_t numBlocksInUse; ///< Number of currently allocated blocks.
519  size_t numBlocksToForce; ///< Number of blocks that is added when Force Alloc
520  /// expands the pool.
521 #if LE_CONFIG_MEM_TRACE
522  le_log_TraceRef_t memTrace; ///< If tracing is enabled, keeps track of a trace object
523  ///< for this pool.
524 #endif
525 
526  le_mem_Destructor_t destructor; ///< The destructor for objects in this pool.
527 #if LE_CONFIG_MEM_POOL_NAMES_ENABLED
528  char name[LE_MEM_LIMIT_MAX_MEM_POOL_NAME_BYTES]; ///< Name of the pool.
529 #endif
530 }
532 
533 
534 //--------------------------------------------------------------------------------------------------
535 /**
536  * Objects of this type are used to refer to a memory pool created using either
537  * le_mem_CreatePool() or le_mem_CreateSubPool().
538  */
539 //--------------------------------------------------------------------------------------------------
540 typedef struct le_mem_Pool* le_mem_PoolRef_t;
541 
542 
543 //--------------------------------------------------------------------------------------------------
544 /**
545  * List of memory pool statistics.
546  */
547 //--------------------------------------------------------------------------------------------------
548 typedef struct
549 {
550  size_t numBlocksInUse; ///< Number of currently allocated blocks.
551  size_t maxNumBlocksUsed; ///< Maximum number of allocated blocks at any one time.
552  size_t numOverflows; ///< Number of times le_mem_ForceAlloc() had to expand the pool.
553  uint64_t numAllocs; ///< Number of times an object has been allocated from this pool.
554  size_t numFree; ///< Number of free objects currently available in this pool.
555 }
557 
558 
559 #if LE_CONFIG_MEM_TRACE
560  //----------------------------------------------------------------------------------------------
561  /**
562  * Internal function used to retrieve a pool handle for a given pool block.
563  */
564  //----------------------------------------------------------------------------------------------
565  le_mem_PoolRef_t _le_mem_GetBlockPool
566  (
567  void* objPtr ///< [IN] Pointer to the object we're finding a pool for.
568  );
569 
570  typedef void* (*_le_mem_AllocFunc_t)(le_mem_PoolRef_t pool);
571 
572  //----------------------------------------------------------------------------------------------
573  /**
574  * Internal function used to call a memory allocation function and trace its call site.
575  */
576  //----------------------------------------------------------------------------------------------
577  void* _le_mem_AllocTracer
578  (
579  le_mem_PoolRef_t pool, ///< [IN] The pool activity we're tracing.
580  _le_mem_AllocFunc_t funcPtr, ///< [IN] Pointer to the mem function in question.
581  const char* poolFunction, ///< [IN] The pool function being called.
582  const char* file, ///< [IN] The file the call came from.
583  const char* callingfunction, ///< [IN] The function calling into the pool.
584  size_t line ///< [IN] The line in the function where the call
585  /// occurred.
586  );
587 
588  //----------------------------------------------------------------------------------------------
589  /**
590  * Internal function used to call a variable memory allocation function and trace its call site.
591  */
592  //----------------------------------------------------------------------------------------------
593  void* _le_mem_VarAllocTracer
594  (
595  le_mem_PoolRef_t pool, ///< [IN] The pool activity we're tracing.
596  size_t size, ///< [IN] The size of block to allocate
597  _le_mem_AllocFunc_t funcPtr, ///< [IN] Pointer to the mem function in question.
598  const char* poolFunction, ///< [IN] The pool function being called.
599  const char* file, ///< [IN] The file the call came from.
600  const char* callingfunction, ///< [IN] The function calling into the pool.
601  size_t line ///< [IN] The line in the function where the call
602  /// occurred.
603  );
604 
605  //----------------------------------------------------------------------------------------------
606  /**
607  * Internal function used to trace memory pool activity.
608  */
609  //----------------------------------------------------------------------------------------------
610  void _le_mem_Trace
611  (
612  le_mem_PoolRef_t pool, ///< [IN] The pool activity we're tracing.
613  const char* file, ///< [IN] The file the call came from.
614  const char* callingfunction, ///< [IN] The function calling into the pool.
615  size_t line, ///< [IN] The line in the function where the call
616  /// occurred.
617  const char* poolFunction, ///< [IN] The pool function being called.
618  void* blockPtr ///< [IN] Block allocated/freed.
619  );
620 #endif
621 
622 
623 /// @cond HIDDEN_IN_USER_DOCS
624 //--------------------------------------------------------------------------------------------------
625 /**
626  * Internal function used to implement le_mem_InitStaticPool() with automatic component scoping
627  * of pool names.
628  */
629 //--------------------------------------------------------------------------------------------------
630 le_mem_PoolRef_t _le_mem_InitStaticPool
631 (
632  const char* componentName, ///< [IN] Name of the component.
633  const char* name, ///< [IN] Name of the pool inside the component.
634  size_t numBlocks, ///< [IN] Number of members in the pool by default
635  size_t objSize, ///< [IN] Size of the individual objects to be allocated from this pool
636  /// (in bytes), e.g., sizeof(MyObject_t).
637  le_mem_Pool_t* poolPtr, ///< [IN] Pointer to pre-allocated pool header.
638  void* poolDataPtr ///< [IN] Pointer to pre-allocated pool data.
639 );
640 /// @endcond
641 
642 
643 #if LE_CONFIG_MEM_POOL_NAMES_ENABLED
644 //--------------------------------------------------------------------------------------------------
645 /** @cond HIDDEN_IN_USER_DOCS
646  *
647  * Internal function used to implement le_mem_CreatePool() with automatic component scoping
648  * of pool names.
649  */
650 //--------------------------------------------------------------------------------------------------
651 le_mem_PoolRef_t _le_mem_CreatePool
652 (
653  const char* componentName, ///< [IN] Name of the component.
654  const char* name, ///< [IN] Name of the pool inside the component.
655  size_t objSize ///< [IN] Size of the individual objects to be allocated from this pool
656  /// (in bytes), e.g., sizeof(MyObject_t).
657 );
658 /// @endcond
659 //--------------------------------------------------------------------------------------------------
660 /**
661  * Creates an empty memory pool.
662  *
663  * @return
664  * Reference to the memory pool object.
665  *
666  * @note
667  * On failure, the process exits, so you don't have to worry about checking the returned
668  * reference for validity.
669  */
670 //--------------------------------------------------------------------------------------------------
671 static inline le_mem_PoolRef_t le_mem_CreatePool
672 (
673  const char* name, ///< [IN] Name of the pool inside the component.
674  size_t objSize ///< [IN] Size of the individual objects to be allocated from this pool
675  /// (in bytes), e.g., sizeof(MyObject_t).
676 )
677 {
678  return _le_mem_CreatePool(STRINGIZE(LE_COMPONENT_NAME), name, objSize);
679 }
680 #else /* if not LE_CONFIG_MEM_POOL_NAMES_ENABLED */
681 //--------------------------------------------------------------------------------------------------
682 /** @cond HIDDEN_IN_USER_DOCS
683  *
684  * Internal function used to implement le_mem_CreatePool() with automatic component scoping
685  * of pool names.
686  */
687 //--------------------------------------------------------------------------------------------------
688 le_mem_PoolRef_t _le_mem_CreatePool
689 (
690  size_t objSize ///< [IN] Size of the individual objects to be allocated from this pool
691  /// (in bytes), e.g., sizeof(MyObject_t).
692 );
693 /// @endcond
694 //--------------------------------------------------------------------------------------------------
695 /**
696  * Creates an empty memory pool.
697  *
698  * @return
699  * Reference to the memory pool object.
700  *
701  * @note
702  * On failure, the process exits, so you don't have to worry about checking the returned
703  * reference for validity.
704  */
705 //--------------------------------------------------------------------------------------------------
706 LE_DECLARE_INLINE le_mem_PoolRef_t le_mem_CreatePool
707 (
708  const char* name, ///< [IN] Name of the pool inside the component.
709  size_t objSize ///< [IN] Size of the individual objects to be allocated from this pool
710  /// (in bytes), e.g., sizeof(MyObject_t).
711 )
712 {
713  return _le_mem_CreatePool(objSize);
714 }
715 #endif /* end LE_CONFIG_MEM_POOL_NAMES_ENABLED */
716 
717 //--------------------------------------------------------------------------------------------------
718 /**
719  * Number of words in a memory pool, given number of blocks and object size.
720  *
721  * @note Only used internally
722  */
723 //--------------------------------------------------------------------------------------------------
724 #define LE_MEM_POOL_WORDS(numBlocks, objSize) \
725  ((numBlocks)*(((sizeof(le_mem_Pool_t*) + sizeof(size_t)) /* sizeof(MemBlock_t) */ + \
726  (((objSize)<sizeof(le_sls_Link_t))?sizeof(le_sls_Link_t):(objSize))+ \
727  sizeof(uint32_t)*LE_CONFIG_NUM_GUARD_BAND_WORDS*2+ \
728  sizeof(size_t) - 1) / sizeof(size_t)))
729 
730 //--------------------------------------------------------------------------------------------------
731 /**
732  * Declare variables for a static memory pool.
733  *
734  * In a static memory pool initial pool memory is statically allocated at compile time, ensuring
735  * pool can be created with at least some elements. This is especially valuable on embedded
736  * systems.
737  */
738 /*
739  * Internal Note: size_t is used instead of uint8_t to ensure alignment on platforms where
740  * alignment matters.
741  */
742 //--------------------------------------------------------------------------------------------------
743 #if LE_CONFIG_MEM_POOLS
744 # define LE_MEM_DEFINE_STATIC_POOL(name, numBlocks, objSize) \
745  static le_mem_Pool_t _mem_##name##Pool; \
746  static size_t _mem_##name##Data[LE_MEM_POOL_WORDS(numBlocks, objSize)]
747 #else
748 # define LE_MEM_DEFINE_STATIC_POOL(name, numBlocks, objSize) \
749  static le_mem_Pool_t _mem_##name##Pool
750 #endif
751 
752 
753 //--------------------------------------------------------------------------------------------------
754 /**
755  * Initialize an empty static memory pool.
756  *
757  * @return
758  * Reference to the memory pool object.
759  *
760  * @note
761  * This function cannot fail.
762  */
763 //--------------------------------------------------------------------------------------------------
764 #if LE_CONFIG_MEM_POOLS
765 # define le_mem_InitStaticPool(name, numBlocks, objSize) \
766  (inline_static_assert( \
767  sizeof(_mem_##name##Data) == sizeof(size_t[LE_MEM_POOL_WORDS(numBlocks, objSize)]), \
768  "initial pool size does not match definition"), \
769  _le_mem_InitStaticPool(STRINGIZE(LE_COMPONENT_NAME), #name, (numBlocks), (objSize), \
770  &_mem_##name##Pool, _mem_##name##Data))
771 #else
772 # define le_mem_InitStaticPool(name, numBlocks, objSize) \
773  _le_mem_InitStaticPool(STRINGIZE(LE_COMPONENT_NAME), #name, (numBlocks), (objSize), \
774  &_mem_##name##Pool, NULL)
775 #endif
776 
777 //--------------------------------------------------------------------------------------------------
778 /**
779  * Expands the size of a memory pool.
780  *
781  * @return Reference to the memory pool object (the same value passed into it).
782  *
783  * @note On failure, the process exits, so you don't have to worry about checking the returned
784  * reference for validity.
785  */
786 //--------------------------------------------------------------------------------------------------
787 le_mem_PoolRef_t le_mem_ExpandPool
788 (
789  le_mem_PoolRef_t pool, ///< [IN] Pool to be expanded.
790  size_t numObjects ///< [IN] Number of objects to add to the pool.
791 );
792 
793 
794 
795 #if !LE_CONFIG_MEM_TRACE
796  //----------------------------------------------------------------------------------------------
797  /**
798  * Attempts to allocate an object from a pool.
799  *
800  * @return
801  * Pointer to the allocated object, or NULL if the pool doesn't have any free objects
802  * to allocate.
803  */
804  //----------------------------------------------------------------------------------------------
805  void* le_mem_TryAlloc
806  (
807  le_mem_PoolRef_t pool ///< [IN] Pool from which the object is to be allocated.
808  );
809 #else
810  /// @cond HIDDEN_IN_USER_DOCS
811  void* _le_mem_TryAlloc(le_mem_PoolRef_t pool);
812  /// @endcond
813 
814 # define le_mem_TryAlloc(pool) \
815  _le_mem_AllocTracer(pool, \
816  _le_mem_TryAlloc, \
817  "le_mem_TryAlloc", \
818  STRINGIZE(LE_FILENAME), \
819  __FUNCTION__, \
820  __LINE__)
821 
822 #endif
823 
824 
825 #if !LE_CONFIG_MEM_TRACE
826  //----------------------------------------------------------------------------------------------
827  /**
828  * Allocates an object from a pool or logs a fatal error and terminates the process if the pool
829  * doesn't have any free objects to allocate.
830  *
831  * @return Pointer to the allocated object.
832  *
833  * @note On failure, the process exits, so you don't have to worry about checking the
834  * returned pointer for validity.
835  */
836  //----------------------------------------------------------------------------------------------
837  void* le_mem_AssertAlloc
838  (
839  le_mem_PoolRef_t pool ///< [IN] Pool from which the object is to be allocated.
840  );
841 #else
842  /// @cond HIDDEN_IN_USER_DOCS
843  void* _le_mem_AssertAlloc(le_mem_PoolRef_t pool);
844  /// @endcond
845 
846 # define le_mem_AssertAlloc(pool) \
847  _le_mem_AllocTracer(pool, \
848  _le_mem_AssertAlloc, \
849  "le_mem_AssertAlloc", \
850  STRINGIZE(LE_FILENAME), \
851  __FUNCTION__, \
852  __LINE__)
853 #endif
854 
855 
856 #if !LE_CONFIG_MEM_TRACE
857  //----------------------------------------------------------------------------------------------
858  /**
859  * Allocates an object from a pool or logs a warning and expands the pool if the pool
860  * doesn't have any free objects to allocate.
861  *
862  * @return Pointer to the allocated object.
863  *
864  * @note On failure, the process exits, so you don't have to worry about checking the
865  * returned pointer for validity.
866  */
867  //----------------------------------------------------------------------------------------------
868  void* le_mem_ForceAlloc
869  (
870  le_mem_PoolRef_t pool ///< [IN] Pool from which the object is to be allocated.
871  );
872 #else
873  /// @cond HIDDEN_IN_USER_DOCS
874  void* _le_mem_ForceAlloc(le_mem_PoolRef_t pool);
875  /// @endcond
876 
877 # define le_mem_ForceAlloc(pool) \
878  _le_mem_AllocTracer(pool, \
879  _le_mem_ForceAlloc, \
880  "le_mem_ForceAlloc", \
881  STRINGIZE(LE_FILENAME), \
882  __FUNCTION__, \
883  __LINE__)
884 #endif
885 
886 
887 #if !LE_CONFIG_MEM_TRACE
888  //----------------------------------------------------------------------------------------------
889  /**
890  * Attempts to allocate an object from a pool.
891  *
892  * @return
893  * Pointer to the allocated object, or NULL if the pool doesn't have any free objects
894  * to allocate.
895  */
896  //----------------------------------------------------------------------------------------------
897  void* le_mem_TryVarAlloc
898  (
899  le_mem_PoolRef_t pool, ///< [IN] Pool from which the object is to be allocated.
900  size_t size ///< [IN] The size of block to allocate
901  );
902 #else
903  /// @cond HIDDEN_IN_USER_DOCS
904  void* _le_mem_TryVarAlloc(le_mem_PoolRef_t pool, size_t size);
905  /// @endcond
906 
907 # define le_mem_TryVarAlloc(pool, size) \
908  _le_mem_VarAllocTracer(pool, \
909  size, \
910  _le_mem_TryVarAlloc, \
911  "le_mem_TryVarAlloc", \
912  STRINGIZE(LE_FILENAME), \
913  __FUNCTION__, \
914  __LINE__)
915 
916 #endif
917 
918 
919 #if !LE_CONFIG_MEM_TRACE
920  //----------------------------------------------------------------------------------------------
921  /**
922  * Allocates an object from a pool or logs a fatal error and terminates the process if the pool
923  * doesn't have any free objects to allocate.
924  *
925  * @return Pointer to the allocated object.
926  *
927  * @note On failure, the process exits, so you don't have to worry about checking the
928  * returned pointer for validity.
929  */
930  //----------------------------------------------------------------------------------------------
932  (
933  le_mem_PoolRef_t pool, ///< [IN] Pool from which the object is to be allocated.
934  size_t size ///< [IN] The size of block to allocate
935  );
936 #else
937  /// @cond HIDDEN_IN_USER_DOCS
938  void* _le_mem_AssertVarAlloc(le_mem_PoolRef_t pool, size_t size);
939  /// @endcond
940 
941 # define le_mem_AssertVarAlloc(pool, size) \
942  _le_mem_VarAllocTracer(pool, \
943  size, \
944  _le_mem_AssertVarAlloc, \
945  "le_mem_AssertVarAlloc", \
946  STRINGIZE(LE_FILENAME), \
947  __FUNCTION__, \
948  __LINE__)
949 #endif
950 
951 
952 #if !LE_CONFIG_MEM_TRACE
953  //----------------------------------------------------------------------------------------------
954  /**
955  * Allocates an object from a pool or logs a warning and expands the pool if the pool
956  * doesn't have any free objects to allocate.
957  *
958  * @return Pointer to the allocated object.
959  *
960  * @note On failure, the process exits, so you don't have to worry about checking the
961  * returned pointer for validity.
962  */
963  //----------------------------------------------------------------------------------------------
965  (
966  le_mem_PoolRef_t pool, ///< [IN] Pool from which the object is to be allocated.
967  size_t size ///< [IN] The size of block to allocate
968  );
969 #else
970  /// @cond HIDDEN_IN_USER_DOCS
971  void* _le_mem_ForceVarAlloc(le_mem_PoolRef_t pool, size_t size);
972  /// @endcond
973 
974 # define le_mem_ForceVarAlloc(pool, size) \
975  _le_mem_VarAllocTracer(pool, \
976  size, \
977  _le_mem_ForceVarAlloc, \
978  "le_mem_ForceVarAlloc", \
979  STRINGIZE(LE_FILENAME), \
980  __FUNCTION__, \
981  __LINE__)
982 #endif
983 
984 
985 //--------------------------------------------------------------------------------------------------
986 /**
987  * Sets the number of objects that are added when le_mem_ForceAlloc expands the pool.
988  *
989  * @return
990  * Nothing.
991  *
992  * @note
993  * The default value is one.
994  */
995 //--------------------------------------------------------------------------------------------------
997 (
998  le_mem_PoolRef_t pool, ///< [IN] Pool to set the number of objects for.
999  size_t numObjects ///< [IN] Number of objects that is added when
1000  /// le_mem_ForceAlloc expands the pool.
1001 );
1002 
1003 
1004 #if !LE_CONFIG_MEM_TRACE
1005  //----------------------------------------------------------------------------------------------
1006  /**
1007  * Releases an object. If the object's reference count has reached zero, it will be destructed
1008  * and its memory will be put back into the pool for later reuse.
1009  *
1010  * @return
1011  * Nothing.
1012  *
1013  * @warning
1014  * - <b>Don't EVER access an object after releasing it.</b> It might not exist anymore.
1015  * - If the object has a destructor accessing a data structure shared by multiple
1016  * threads, ensure you hold the mutex (or take other measures to prevent races) before
1017  * releasing the object.
1018  */
1019  //----------------------------------------------------------------------------------------------
1020  void le_mem_Release
1021  (
1022  void* objPtr ///< [IN] Pointer to the object to be released.
1023  );
1024 #else
1025  /// @cond HIDDEN_IN_USER_DOCS
1026  void _le_mem_Release(void* objPtr);
1027  /// @endcond
1028 
1029 # define le_mem_Release(objPtr) \
1030  _le_mem_Trace(_le_mem_GetBlockPool(objPtr), \
1031  STRINGIZE(LE_FILENAME), \
1032  __FUNCTION__, \
1033  __LINE__, \
1034  "le_mem_Release", \
1035  (objPtr)); \
1036  _le_mem_Release(objPtr);
1037 #endif
1038 
1039 
1040 #if !LE_CONFIG_MEM_TRACE
1041  //----------------------------------------------------------------------------------------------
1042  /**
1043  * Increments the reference count on an object by 1.
1044  *
1045  * See @ref mem_ref_counting for more information.
1046  *
1047  * @return
1048  * Nothing.
1049  */
1050  //----------------------------------------------------------------------------------------------
1051  void le_mem_AddRef
1052  (
1053  void* objPtr ///< [IN] Pointer to the object.
1054  );
1055 #else
1056  /// @cond HIDDEN_IN_USER_DOCS
1057  void _le_mem_AddRef(void* objPtr);
1058  /// @endcond
1059 
1060 # define le_mem_AddRef(objPtr) \
1061  _le_mem_Trace(_le_mem_GetBlockPool(objPtr), \
1062  STRINGIZE(LE_FILENAME), \
1063  __FUNCTION__, \
1064  __LINE__, \
1065  "le_mem_AddRef", \
1066  (objPtr)); \
1067  _le_mem_AddRef(objPtr);
1068 #endif
1069 
1070 //--------------------------------------------------------------------------------------------------
1071 /**
1072  * Fetches the size of a block (in bytes).
1073  *
1074  * @return
1075  * Object size, in bytes.
1076  */
1077 //--------------------------------------------------------------------------------------------------
1078 size_t le_mem_GetBlockSize
1079 (
1080  void* objPtr ///< [IN] Pointer to the object to get size of.
1081 );
1082 
1083 //----------------------------------------------------------------------------------------------
1084 /**
1085  * Fetches the reference count on an object.
1086  *
1087  * See @ref mem_ref_counting for more information.
1088  *
1089  * @warning If using this in a multi-threaded application that shares memory pool objects
1090  * between threads, steps must be taken to coordinate the threads (e.g., using a mutex)
1091  * to ensure that the reference count value fetched remains correct when it is used.
1092  *
1093  * @return
1094  * The reference count on the object.
1095  */
1096 //----------------------------------------------------------------------------------------------
1097 size_t le_mem_GetRefCount
1098 (
1099  void* objPtr ///< [IN] Pointer to the object.
1100 );
1101 
1102 
1103 //--------------------------------------------------------------------------------------------------
1104 /**
1105  * Sets the destructor function for a specified pool.
1106  *
1107  * See @ref mem_destructors for more information.
1108  *
1109  * @return
1110  * Nothing.
1111  */
1112 //--------------------------------------------------------------------------------------------------
1114 (
1115  le_mem_PoolRef_t pool, ///< [IN] The pool.
1116  le_mem_Destructor_t destructor ///< [IN] Destructor function.
1117 );
1118 
1119 
1120 //--------------------------------------------------------------------------------------------------
1121 /**
1122  * Fetches the statistics for a specified pool.
1123  *
1124  * @return
1125  * Nothing. Uses output parameter instead.
1126  */
1127 //--------------------------------------------------------------------------------------------------
1128 void le_mem_GetStats
1129 (
1130  le_mem_PoolRef_t pool, ///< [IN] Pool where stats are to be fetched.
1131  le_mem_PoolStats_t* statsPtr ///< [OUT] Pointer to where the stats will be stored.
1132 );
1133 
1134 
1135 //--------------------------------------------------------------------------------------------------
1136 /**
1137  * Resets the statistics for a specified pool.
1138  *
1139  * @return
1140  * Nothing.
1141  */
1142 //--------------------------------------------------------------------------------------------------
1143 void le_mem_ResetStats
1144 (
1145  le_mem_PoolRef_t pool ///< [IN] Pool where stats are to be reset.
1146 );
1147 
1148 
1149 //--------------------------------------------------------------------------------------------------
1150 /**
1151  * Gets the memory pool's name, including the component name prefix.
1152  *
1153  * If the pool were given the name "myPool" and the component that it belongs to is called
1154  * "myComponent", then the full pool name returned by this function would be "myComponent.myPool".
1155  *
1156  * @return
1157  * LE_OK if successful.
1158  * LE_OVERFLOW if the name was truncated to fit in the provided buffer.
1159  */
1160 //--------------------------------------------------------------------------------------------------
1162 (
1163  le_mem_PoolRef_t pool, ///< [IN] The memory pool.
1164  char* namePtr, ///< [OUT] Buffer to store the name of the memory pool.
1165  size_t bufSize ///< [IN] Size of the buffer namePtr points to.
1166 );
1167 
1168 
1169 //--------------------------------------------------------------------------------------------------
1170 /**
1171  * Checks if the specified pool is a sub-pool.
1172  *
1173  * @return
1174  * true if it is a sub-pool.
1175  * false if it is not a sub-pool.
1176  */
1177 //--------------------------------------------------------------------------------------------------
1178 const bool le_mem_IsSubPool
1179 (
1180  le_mem_PoolRef_t pool ///< [IN] The memory pool.
1181 );
1182 
1183 
1184 //--------------------------------------------------------------------------------------------------
1185 /**
1186  * Fetches the number of objects a specified pool can hold (this includes both the number of
1187  * free and in-use objects).
1188  *
1189  * @return
1190  * Total number of objects.
1191  */
1192 //--------------------------------------------------------------------------------------------------
1193 size_t le_mem_GetObjectCount
1194 (
1195  le_mem_PoolRef_t pool ///< [IN] Pool where number of objects is to be fetched.
1196 );
1197 
1198 
1199 //--------------------------------------------------------------------------------------------------
1200 /**
1201  * Fetches the size of the objects in a specified pool (in bytes).
1202  *
1203  * @return
1204  * Object size, in bytes.
1205  */
1206 //--------------------------------------------------------------------------------------------------
1207 size_t le_mem_GetObjectSize
1208 (
1209  le_mem_PoolRef_t pool ///< [IN] Pool where object size is to be fetched.
1210 );
1211 
1212 
1213 //--------------------------------------------------------------------------------------------------
1214 /**
1215  * Fetches the total size of the object including all the memory overhead in a given pool (in bytes).
1216  *
1217  * @return
1218  * Total object memory size, in bytes.
1219  */
1220 //--------------------------------------------------------------------------------------------------
1222 (
1223  le_mem_PoolRef_t pool ///< [IN] The pool whose object memory size is to be fetched.
1224 );
1225 
1226 
1227 #if LE_CONFIG_MEM_POOL_NAMES_ENABLED
1228 //--------------------------------------------------------------------------------------------------
1229 /** @cond HIDDEN_IN_USER_DOCS
1230  *
1231  * Internal function used to implement le_mem_FindPool() with automatic component scoping
1232  * of pool names.
1233  */
1234 //--------------------------------------------------------------------------------------------------
1235 le_mem_PoolRef_t _le_mem_FindPool
1236 (
1237  const char* componentName, ///< [IN] Name of the component.
1238  const char* name ///< [IN] Name of the pool inside the component.
1239 );
1240 /// @endcond
1241 //--------------------------------------------------------------------------------------------------
1242 /**
1243  * Finds a pool based on the pool's name.
1244  *
1245  * @return
1246  * Reference to the pool, or NULL if the pool doesn't exist.
1247  */
1248 //--------------------------------------------------------------------------------------------------
1249 static inline le_mem_PoolRef_t le_mem_FindPool
1251  const char* name ///< [IN] Name of the pool inside the component.
1252 )
1253 {
1254  return _le_mem_FindPool(STRINGIZE(LE_COMPONENT_NAME), name);
1255 }
1256 #else
1257 //--------------------------------------------------------------------------------------------------
1258 /**
1259  * Finds a pool based on the pool's name.
1260  *
1261  * @return
1262  * Reference to the pool, or NULL if the pool doesn't exist.
1263  */
1264 //--------------------------------------------------------------------------------------------------
1265 LE_DECLARE_INLINE le_mem_PoolRef_t le_mem_FindPool
1266 (
1267  const char* name ///< [IN] Name of the pool inside the component.
1268 )
1269 {
1270  return NULL;
1271 }
1272 #endif /* end LE_CONFIG_MEM_POOL_NAMES_ENABLED */
1273 
1274 
1275 #if LE_CONFIG_MEM_POOL_NAMES_ENABLED
1276 //--------------------------------------------------------------------------------------------------
1277 /** @cond HIDDEN_IN_USER_DOCS
1278  *
1279  * Internal function used to implement le_mem_CreateSubPool() with automatic component scoping
1280  * of pool names.
1281  */
1282 //--------------------------------------------------------------------------------------------------
1283 le_mem_PoolRef_t _le_mem_CreateSubPool
1284 (
1285  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1286  const char* componentName, ///< [IN] Name of the component.
1287  const char* name, ///< [IN] Name of the sub-pool (will be copied into the
1288  /// sub-pool).
1289  size_t numObjects ///< [IN] Number of objects to take from the super-pool.
1290 );
1291 /// @endcond
1292 //--------------------------------------------------------------------------------------------------
1293 /**
1294  * Creates a sub-pool.
1295  *
1296  * See @ref mem_sub_pools for more information.
1297  *
1298  * @return
1299  * Reference to the sub-pool.
1300  */
1301 //--------------------------------------------------------------------------------------------------
1302 static inline le_mem_PoolRef_t le_mem_CreateSubPool
1304  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1305  const char* name, ///< [IN] Name of the sub-pool (will be copied into the
1306  /// sub-pool).
1307  size_t numObjects ///< [IN] Number of objects to take from the super-pool.
1308 )
1309 {
1310  return _le_mem_CreateSubPool(superPool, STRINGIZE(LE_COMPONENT_NAME), name, numObjects);
1311 }
1312 #else /* if not LE_CONFIG_MEM_POOL_NAMES_ENABLED */
1313 //--------------------------------------------------------------------------------------------------
1314 /** @cond HIDDEN_IN_USER_DOCS
1315  *
1316  * Internal function used to implement le_mem_CreateSubPool() with automatic component scoping
1317  * of pool names.
1318  */
1319 //--------------------------------------------------------------------------------------------------
1320 le_mem_PoolRef_t _le_mem_CreateSubPool
1321 (
1322  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1323  size_t numObjects ///< [IN] Number of objects to take from the super-pool.
1324 );
1325 /// @endcond
1326 //--------------------------------------------------------------------------------------------------
1327 /**
1328  * Creates a sub-pool.
1329  *
1330  * See @ref mem_sub_pools for more information.
1331  *
1332  * @return
1333  * Reference to the sub-pool.
1334  */
1335 //--------------------------------------------------------------------------------------------------
1336 LE_DECLARE_INLINE le_mem_PoolRef_t le_mem_CreateSubPool
1337 (
1338  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1339  const char* name, ///< [IN] Name of the sub-pool (will be copied into the
1340  /// sub-pool).
1341  size_t numObjects ///< [IN] Number of objects to take from the super-pool.
1342 )
1343 {
1344  return _le_mem_CreateSubPool(superPool, numObjects);
1345 }
1346 #endif /* end LE_CONFIG_MEM_POOL_NAMES_ENABLED */
1347 
1348 
1349 #if LE_CONFIG_MEM_POOL_NAMES_ENABLED
1350 //--------------------------------------------------------------------------------------------------
1351 /** @cond HIDDEN_IN_USER_DOCS
1352  *
1353  * Internal function used to implement le_mem_CreateSubPool() with automatic component scoping
1354  * of pool names.
1355  */
1356 //--------------------------------------------------------------------------------------------------
1357 le_mem_PoolRef_t _le_mem_CreateReducedPool
1358 (
1359  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1360  const char* componentName, ///< [IN] Name of the component.
1361  const char* name, ///< [IN] Name of the sub-pool (will be copied into the
1362  /// sub-pool).
1363  size_t numObjects, ///< [IN] Number of objects to take from the super-pool.
1364  size_t objSize ///< [IN] Minimum size of objects in the subpool.
1365 );
1366 /// @endcond
1367 //--------------------------------------------------------------------------------------------------
1368 /**
1369  * Creates a sub-pool of smaller objects.
1370  *
1371  * See @ref mem_reduced_pools for more information.
1372  *
1373  * @return
1374  * Reference to the sub-pool.
1375  */
1376 //--------------------------------------------------------------------------------------------------
1377 static inline le_mem_PoolRef_t le_mem_CreateReducedPool
1379  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1380  const char* name, ///< [IN] Name of the sub-pool (will be copied into the
1381  /// sub-pool).
1382  size_t numObjects, ///< [IN] Minimum number of objects in the subpool
1383  ///< by default.
1384  size_t objSize ///< [IN] Minimum size of objects in the subpool.
1385 )
1386 {
1387  return _le_mem_CreateReducedPool(superPool, STRINGIZE(LE_COMPONENT_NAME), name, numObjects, objSize);
1388 }
1389 #else /* if not LE_CONFIG_MEM_POOL_NAMES_ENABLED */
1390 //--------------------------------------------------------------------------------------------------
1391 /** @cond HIDDEN_IN_USER_DOCS
1392  *
1393  * Internal function used to implement le_mem_CreateSubPool() with automatic component scoping
1394  * of pool names.
1395  */
1396 //--------------------------------------------------------------------------------------------------
1397 le_mem_PoolRef_t _le_mem_CreateReducedPool
1398 (
1399  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1400  size_t numObjects, ///< [IN] Minimum number of objects in the subpool
1401  ///< by default.
1402  size_t objSize ///< [IN] Minimum size of objects in the subpool.
1403 );
1404 /// @endcond
1405 //--------------------------------------------------------------------------------------------------
1406 /**
1407  * Creates a sub-pool of smaller objects.
1408  *
1409  * See @ref mem_reduced_pools for more information.
1410  *
1411  * @return
1412  * Reference to the sub-pool.
1413  */
1414 //--------------------------------------------------------------------------------------------------
1416 (
1417  le_mem_PoolRef_t superPool, ///< [IN] Super-pool.
1418  const char* name, ///< [IN] Name of the sub-pool (will be copied into the
1419  /// sub-pool).
1420  size_t numObjects, ///< [IN] Minimum number of objects in the subpool
1421  ///< by default.
1422  size_t objSize ///< [IN] Minimum size of objects in the subpool.
1423 )
1424 {
1425  return _le_mem_CreateReducedPool(superPool, numObjects, objSize);
1426 }
1427 #endif /* end LE_CONFIG_MEM_POOL_NAMES_ENABLED */
1428 
1429 
1430 //--------------------------------------------------------------------------------------------------
1431 /**
1432  * Deletes a sub-pool.
1433  *
1434  * See @ref mem_sub_pools for more information.
1435  *
1436  * @return
1437  * Nothing.
1438  */
1439 //--------------------------------------------------------------------------------------------------
1441 (
1442  le_mem_PoolRef_t subPool ///< [IN] Sub-pool to be deleted.
1443 );
1444 
1445 #if LE_CONFIG_RTOS
1446 //--------------------------------------------------------------------------------------------------
1447 /**
1448  * Compress memory pools ready for hibernate-to-RAM
1449  *
1450  * This compresses the memory pools ready for hibernation. All Legato tasks must remain
1451  * suspended until after le_mem_Resume() is called.
1452  *
1453  * @return Nothing
1454  */
1455 //--------------------------------------------------------------------------------------------------
1456 void le_mem_Hibernate
1457 (
1458  void **freeStartPtr, ///< [OUT] Beginning of unused memory which does not need to be
1459  ///< preserved in hibernation
1460  void **freeEndPtr ///< [OUT] End of unused memory
1461 );
1462 
1463 //--------------------------------------------------------------------------------------------------
1464 /**
1465  * Decompress memory pools after waking from hibernate-to-RAM
1466  *
1467  * This decompresses memory pools after hibernation. After this function returns, Legato tasks
1468  * may be resumed.
1469  *
1470  * @return Nothing
1471  */
1472 //--------------------------------------------------------------------------------------------------
1473 void le_mem_Resume
1474 (
1475  void
1476 );
1477 
1478 #endif /* end LE_CONFIG_RTOS */
1479 
1480 
1481 #endif // LEGATO_MEM_INCLUDE_GUARD
size_t numBlocksToForce
Definition: le_mem.h:519
size_t numFree
Number of free objects currently available in this pool.
Definition: le_mem.h:554
uint64_t numAllocations
Definition: le_mem.h:506
void * le_mem_TryAlloc(le_mem_PoolRef_t pool)
le_sls_List_t freeList
List of free memory blocks.
Definition: le_mem.h:511
void * le_mem_TryVarAlloc(le_mem_PoolRef_t pool, size_t size)
le_mem_PoolRef_t le_mem_ExpandPool(le_mem_PoolRef_t pool, size_t numObjects)
le_result_t
Definition: le_basics.h:35
void * le_mem_AssertAlloc(le_mem_PoolRef_t pool)
void le_mem_GetStats(le_mem_PoolRef_t pool, le_mem_PoolStats_t *statsPtr)
void le_mem_Resume(void)
const bool le_mem_IsSubPool(le_mem_PoolRef_t pool)
size_t numBlocksInUse
Number of currently allocated blocks.
Definition: le_mem.h:550
size_t totalBlocks
Definition: le_mem.h:516
struct le_mem_Pool * superPoolPtr
Definition: le_mem.h:500
#define STRINGIZE(x)
Definition: le_basics.h:207
void le_mem_SetDestructor(le_mem_PoolRef_t pool, le_mem_Destructor_t destructor)
void * le_mem_AssertVarAlloc(le_mem_PoolRef_t pool, size_t size)
uint64_t numAllocs
Number of times an object has been allocated from this pool.
Definition: le_mem.h:553
size_t maxNumBlocksUsed
Maximum number of allocated blocks at any one time.
Definition: le_mem.h:508
size_t maxNumBlocksUsed
Maximum number of allocated blocks at any one time.
Definition: le_mem.h:551
void * le_mem_ForceVarAlloc(le_mem_PoolRef_t pool, size_t size)
void le_mem_ResetStats(le_mem_PoolRef_t pool)
size_t numOverflows
Number of times le_mem_ForceAlloc() had to expand the pool.
Definition: le_mem.h:552
static le_mem_PoolRef_t le_mem_CreateReducedPool(le_mem_PoolRef_t superPool, const char *name, size_t numObjects, size_t objSize)
Definition: le_mem.h:1378
void le_mem_SetNumObjsToForce(le_mem_PoolRef_t pool, size_t numObjects)
size_t numOverflows
Number of times le_mem_ForceAlloc() had to expand pool.
Definition: le_mem.h:505
void le_mem_DeleteSubPool(le_mem_PoolRef_t subPool)
struct le_mem_Pool * le_mem_PoolRef_t
Definition: le_mem.h:540
le_result_t le_mem_GetName(le_mem_PoolRef_t pool, char *namePtr, size_t bufSize)
void le_mem_Release(void *objPtr)
Definition: le_mem.h:548
static le_mem_PoolRef_t le_mem_FindPool(const char *name)
Definition: le_mem.h:1250
size_t blockSize
Number of bytes in a block, including all overhead.
Definition: le_mem.h:515
void(* le_mem_Destructor_t)(void *objPtr)
Definition: le_mem.h:482
size_t le_mem_GetObjectCount(le_mem_PoolRef_t pool)
Definition: le_mem.h:497
Definition: le_singlyLinkedList.h:201
size_t le_mem_GetObjectFullSize(le_mem_PoolRef_t pool)
le_mem_Destructor_t destructor
The destructor for objects in this pool.
Definition: le_mem.h:526
size_t le_mem_GetBlockSize(void *objPtr)
static le_mem_PoolRef_t le_mem_CreatePool(const char *name, size_t objSize)
Definition: le_mem.h:672
size_t le_mem_GetObjectSize(le_mem_PoolRef_t pool)
le_dls_Link_t poolLink
This pool&#39;s link in the list of memory pools.
Definition: le_mem.h:499
static le_mem_PoolRef_t le_mem_CreateSubPool(le_mem_PoolRef_t superPool, const char *name, size_t numObjects)
Definition: le_mem.h:1303
void le_mem_AddRef(void *objPtr)
void * le_mem_ForceAlloc(le_mem_PoolRef_t pool)
size_t userDataSize
Size of the object requested by the client in bytes.
Definition: le_mem.h:514
void le_mem_Hibernate(void **freeStartPtr, void **freeEndPtr)
size_t numBlocksInUse
Number of currently allocated blocks.
Definition: le_mem.h:518
size_t le_mem_GetRefCount(void *objPtr)
#define LE_DECLARE_INLINE
Definition: le_basics.h:274